Improving the utility of locally differentially private protocols for longitudinal and multidimensional frequency estimates
نویسندگان
چکیده
This paper investigates the problem of collecting multidimensional data throughout time (i.e., longitudinal studies) for fundamental task frequency estimation under Local Differential Privacy (LDP) guarantees. Contrary to a single attribute, aspect demands particular attention privacy budget. Besides, when user statistics longitudinally, progressively degrades. Indeed, "multiple" settings in combination many attributes and several collections time) impose challenges, which this proposes first solution estimates LDP. To tackle these issues, we extend analysis three state-of-the-art LDP protocols (Generalized Randomized Response -- GRR, Optimized Unary Encoding OUE, Symmetric SUE) both collections. While known literature uses OUE SUE two rounds sanitization (a.k.a. memoization), i.e., L-OUE L-SUE, respectively, analytically experimentally show that starting with then provides higher utility L-OSUE). Also, small domain sizes, propose Longitudinal GRR (L-GRR), than other based on unary encoding. Last, also new named Adaptive LOngitudinal Multidimensional FREquency Estimates (ALLOMFREE), randomly samples attribute be sent whole budget adaptively selects optimal protocol, either L-GRR or L-OSUE. As shown results, ALLOMFREE consistently considerably outperforms L-SUE quality estimates.
منابع مشابه
Locally Differentially Private Protocols for Frequency Estimation
Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user’s privacy, without relying on a trusted third party. LDP protocols (such as Google’s RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending...
متن کاملOptimizing Locally Differentially Private Protocols
Protocols satisfying Local Differential Privacy (LDP) enable parties to collect aggregate information about a population while protecting each user’s privacy, without relying on a trusted third party. LDP protocols (such as Google’s RAPPOR) have been deployed in real-world scenarios. In these protocols, a user encodes his private information and perturbs the encoded value locally before sending...
متن کاملFinal Document: Improving Utility of Differentially Private Confidence Intervals
A differentially private randomized algorithm, M , is one meeting the requirement that given two neighboring datasets d and d′, that is datasets that differ in no more than one row, and a set of outcomes S, the following condition that Pr[M(d) ∈ S] ≤ e Pr[M(d′) ∈ S] holds for some ≥ 0. Differentially private algorithms run on datasets can provide the guarantee that the information of any one co...
متن کاملmodification of nanoclay for improving the physico-mechanical properties of dental adhesives
هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...
Black-Box Separations for Differentially Private Protocols
We study the maximal achievable accuracy of distributed differentially private protocols for a large natural class of boolean functions, in the computational setting. In the information theoretic model, McGregor et al. [FOCS 2010] and Goyal et al. [CRYPTO 2013] have demonstrated several functionalities whose differentially private computation results in much lower accuracies in the distributed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Digital Communications and Networks
سال: 2022
ISSN: ['2468-5925', '2352-8648']
DOI: https://doi.org/10.1016/j.dcan.2022.07.003